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New Venture Fund Project Report 
Mapping Gorse along the Southern Oregon Coast 
Emilie Henderson and Jimmy Kagan, Institute for Natural Resources, Oregon State University 

Introduction: 
In November of this year, the Institute for Natural Resources (INR) proposed to the New Venture Fund to 
develop a map and model that would identify likely gorse (Ulex europeaus) locations in southwestern Oregon.  
The work was to be done cooperatively with The Nature Conservancy, taking advantage of data and information 
they had developed working with staff from southwestern Oregon watershed groups and the New Venture Fund 
over the last few years. The project was going to combine information on known gorse locations in the project 
area from the iMapInvasives electronic data system that INR manages on behalf of the Oregon Invasive Species 
Council, with information recently collected by local Soil and Water Conservation Districts (SWCDs) and 
Watershed Groups to identify a relatively comprehensive set of locations to train the model. INR was to take 
advantage of high resolution data from both air photography and, if possible from Light Detection and Ranging 
(lidar) data, to create a high resolution map. The New Venture Fund provided INR funding to start on the project 
in January, and staff at INR was able to generate an initial draft map, identify locations where additional training 
data could significantly improve the map, and create a final map product. This map has been provided to local 
partners, the New Venture Fund, and others interested in using it to eliminate or control the spread of gorse in 
southwestern Oregon. 

Methods: 
Overall, the process of building the distribution model involved: 1) compiling necessary data within the defined 
area of interest; 2) building a model associating the presence or gorse with environmental variables; and 3) 
mapping predictions across the area of interest.  This process was iterative, and involved evaluation of interim 
draft maps by staff from INR and partners.   

1) Compiling necessary data 
The project area was identified based primarily on previous work done by The Nature Conservancy and New 
Venture Fund in southwestern Oregon, limited to areas in Coos and Curry Counties. The area of interest 
encompasses coastal landscapes through mid-montane forests in the western portion of the Klamath/Siskiyou 
mountains. Forest vegetation in the area is dominated by Douglas-fir forests. In places with particularly sandy 
soils along the coast, shorepine is a common tree. Inland, tanoak can also be an important forest tree.  Gorse in 
the region is generally not abundant in the older forests, as it requires full sun for establishment (Rees and Hill 
2001).  It is most common in disturbed areas (e.g., road verges, forest harvests).  It is also present along streams, 
where light reaching the soil surface is relatively high.  Sandy sites that support more open forests can also 
sometimes support more gorse.  

The Nature Conservancy provided INR with a digital map (shapefile) which provided an outline of this area. 
Within this project area, two types of data were collected or complied to create the model and maps of gorse. 
The first is the model training data, the second is the predictor data. These are both described below. 

Training data include both positive and negative locations collected and used to create the models and maps. 
The positive training data allows the model to identify the known locations of gorse in southwestern Oregon, 
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while the negative training data show locations where gorse either cannot occur or is not currently found. 
RandomForest can be more accurate than other species distribution modeling methods because they allow for 
the use of negative training data along with positive data. Negative data can consist of either background points 
created across the entire area modeled, or specifically identified negative locations, or most often both. In this 
case, background points were used, and augmented with negative points from partner organizations from Coos 
and Curry Counties.  As mentioned in the introduction, the positive training data started with information from 
iMapInvasives and data collected by the Coos Watershed Association with assistance from the New Venture 
Fund. After the initial model and maps were built, areas were identified which needed additional training data, 
and these were also collected by the Coos and Curry County partners. Points available for modeling, by data 
source are listed in Table 1. 

Table 1: Training data points (by source) used in the final model. 

 
Absent Present Total 

iMapInvasives database 0 51 51 
gorse_FS_edited 1918 209 2127 

Newly collected in 2016 655 61 716 
Airphoto interpreted in 2016 424 6 430 

Background 814 0 814 
Total: 3811 327 4138 

 

Predictor data consist of the spatial data that the model uses to predict where other locations of gorse may be, 
and the likelihood that it will be found in these places. For this method to be used, any predictor data used must 
consistently cover the entire area that is modeled. The predictor data included the highest resolution 
information we were able to obtain covering the project area, starting from a geodatabase obtained from The 
Nature Conservancy. The data included topographic information (slope, aspect and elevation), which where lidar 
was available could be produced at 1-meter resolution scale, although was generalized to 10 meters pixel data 
for this project. We also used soil data collected by the Natural Resources Conservation Service that were 
collated by INR for the Integrated Landscape Assessment Project, geology data originated by the Oregon 
Department of Geology and Mineral Industries, information on rivers and streams compiled from the National 
Hydrography Dataset and supplemental information from our Curry County partner, climate data from Oregon 
State University’s PRISM program (Daly et al. 2008), along with imagery data developed by INR staff. The 
imagery data included a standard set of data extracted from 1-meter air photography, summarized to 10, that 
provide the model with as much information as is possible to obtain from the imagery, relying on patterns of 
texture and colors at multiple resolutions. These “texture metrics” were developed from uncompressed digital 
copies of the 2012 statewide National Agricultural Imagery Program (NAIP) air photography data, which is 4-
band, 1-meter resolution information. Information on the forest canopy was extracted from the gradient 
nearest neighbor data source (GNN, Ohmann et al. 2011) that was constructed the US Forest Service’s 
Landscape Ecology Modeling Mapping and Analysis team. The canopy cover (CANCOV), and age (AGE_DOM) 
variables were summarized over three spatial scales: pixel, 50m radius, and 100m radius. Mean, minimum, 
maximum and standard deviations were calculated for the 50m, and 100m summaries. A full list of available and 
selected variables is included in the Appendix. 

2) Building the Models  
We created the maps and models using open source software using the random forest machine learning 
algorithm (Breiman 2001), as it is implemented by the randomForest package (Liaw & Wiener 2002) in the R 
environment for statistical computing (R Development Core Team 2013).  This algorithm is becoming more 
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widely used in the field of ecology (Cutler et al. 2007).  It is a flexible and robust technique, minimizing problems 
with data irregularities such as collinearity (Elith et al 2006). It is also a relatively complex model, which makes it 
less effective for ecological understanding, but appropriate for this application where prediction accuracy is the 
primary goal (Merow et al. 2014). INR staff have created scripts for parameterizing the models, and exporting 
model predictions to maps, as well as analyzing model accuracy. We drafted several models, tuning two model 
parameters (the number of classification trees within the ensemble, and the number of variables used to 
generate each branch in each classification tree), and selecting the most useful variables from the full array of 
available variables (selected variables are indicated in the Appendix). 

3) Creating the Maps 
Maps are the primary output required for partners to identify potential new gorse infestations to control or 
eradicate. We created a spatial depiction of the model’s prediction probability for gorse presence in the form of 
a raster image (included with this report). Raw values in the gorse_current.tif image illustrate a probability value 
(multiplied by 1000 for mapping, to enable efficient storage as an integer grid). Two categorizations of the raw 
probabilitiy map were created, using probability cutoffs identified during model evaluation (details below). 
These categories are included as attributes in the raw probability grid. The “FinalMod_c” variable shows the 
categorization derived directly from the final model prediction, while the “CV_c” variable shows the 
categorization derived from the cross-validated prediction (both predictions are described further below). 

4) Evaluating the Maps and Models 
We evaluated our models and maps through a series of steps: 1) Generating two model predictions for 
evaluation, one extracted directly from the final model, and another cross-validated (50-fold) prediction that is 
useful for estimating the model’s performance in areas that are not represented by the plot sample; 2) 
Characterizing overall strength for discerning presence and background points; 3) binary cutoff selection 
through the precision-recall f-measure; 4) Error assessment of the binary transformations of the model 
predictions created by the cutoffs from step three; 5) Visual review of mapped products with biological experts; 
and 6) Tabulating area identified as habitat within the binary maps. 

We calculated five accuracy statistics to describe binary error structure for all the cutoffs identified in step three.  
Percent accuracy shows the proportion of points that are correctly classified. Sensitivity indicates how well the 
model performs with respect to gorse detection, and Specificity indicates how well the model prediction 
performs with respect to true absences. True Skill Statistic (TSS) integrates information from both Sensitivity and 
Specificity, while Kappa indicates how the binary model prediction compares with a random guess. 

As is the case with all efforts to create maps from models, a major factor that contributed to the accuracy of the 
models was the data used, both the training data to identify the known locations of gorse in southwestern 
Oregon, and the predictor data, which is the spatial data that the model uses to predict where other locations of 
gorse may be and the likelihood that it will be found in these places. 

We visually reviewed the categorical maps created with the cutoff values with our partners. The review 
discussions of the early map drafts helped to direct further sampling efforts, and also to identify new spatial 
data sources to supplement later models. The map review of the final model was used to confirm the general 
realism of the patterns in the mapped prediction, and also to identify map layers that should be used for a 
masking process to avoid mapping gorse in areas where it is known to be absent (e.g., serpentine soils, open 
water), but that were not used in the final random forest model. 

 



4 
 

Results and Discussion: 
The final model showed strong performance at discerning presence from absence points for both the out-of-box 
prediction, and the cross-validated prediction (AUC values of 0.99, and 0.90 respectively). Cutoff values selected 
ranged from 0.14 to 0.56 for the final model prediction, and from 0.07 to 0.59 for the out of box model 
predictions. 

For the final model prediction, model performance was strong for all accuracy statistics for all binary 
transformations (Table 2). The minimum model sensitivity was 0.78, and minimum model specificity was 0.98.  
The cross-validated model prediction also indicated reasonable model performance, although not as strong as 
the final model prediction. Values for % accuracy, TSS, and Kappa were acceptable (> 0.4) across most of the 
tested cutoff values. Minimum prediction sensitivity for the cross-validated prediction was 0.43, and minimum 
specificity was 0.79. 

The differences between the accuracies of the prediction extracted directly from the final model, and the cross-
validated prediction indicate that while the map is likely to convey useful information in areas away from the 
current set of observations, there remains potential for improvement if resources become available to collect 
additional training data. 

The final categorical map showing the model-prediction-derived categories (FinalMod_c variable, Figures 2 and 
3) reviewed favorably, although a few minor issues were highlighted, including the mapping of gorse on 
serpentine soils, and also in some aquatic habitats (the errors are un-surprising as neither variable was included 
in the final model). The final map was masked to avoid showing gorse in both of these areas.  

Two points of discussion in the final map review indicated potential benefits from future work. Our partners 
observed the presence of a mapped patch of gorse in the Daniels Creek area, fairly far inland to the east of Coos 
Bay (visible in Figure 3b). While our input data set did contain some gorse presence points, they were older 
observations (from 2009). Fieldwork to confirm the continued presence of gorse in this area would be beneficial 
to future drafts. Future drafts would also benefit from additional information on hydrology, especially with 
respect to wetlands in the Cape Blanco area (Figure 3d). Our partners suggest that gorse presence in this area 
should be more constrained than is mapped due to the high water table in parts of Sullivan Gulch near the Sixes 
River. Identifying and incorporating reliable data on wetlands in the region could potentially refine the map in 
this, and other similar areas. 

Receiver-operator curves shown in Figure 1 final (a), and cross-validated (b) model predictions include binary 
accuracy measures binary model transformations using the cutoff values shown by the blue dots. These cutoff 
values shown were selected to balance false positive and false negative errors.  Percent accuracy measures 
indicate the performance of a binary transformation of the model prediction that corresponds to the cutoff 
value, and represents the proportion of plots that were correctly classified as having gorse presence or absence. 
Sensitivity and Specificity contain complementary information, indicating the model’s performance with respect 
to true positives, and true negatives respectively. True Skill Statistic (TSS) integrates the Specificity and 
Sensitivity metrics into a single value. Kappa indicates model performance in comparison with a random guess. 
For all metrics, values of 1 indicate perfect performance, while values of 0 indicate failure. 
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Figure 1. Receiver-operator curves indicating model performance for the final (a), and cross-
validated (b) model predictions. 

 

Table 2: Model performance metrics for binary transformations of the two types of model 
prediction, out-of-box (best suited to evaluating the actual model used for mapping), and 
cross-validated (best-suited for estimating the model’s performance at predicting unsampled 
areas). Alpha values indicate a parameter used in cutoff selection that prioritizes error-types 
(see patterns in Sensitivity and Specificity for an illustration). For all metrics, values of 1 
indicate perfect performance, while values of 0 indicate failure. For details on the meaning of 
each statistic, see the caption for Figure 1. 

 
Final Model Out Of Box Prediction 

Alpha 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 
Cutoff 0.14 0.24 0.24 0.32 0.37 0.37 0.37 0.48 0.64 

Accuracy 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 
Sensitivity 0.94 0.88 0.88 0.85 0.82 0.82 0.82 0.79 0.70 
Specificity 0.97 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 

TSS 0.91 0.87 0.87 0.84 0.82 0.82 0.82 0.79 0.70 
Kappa 0.78 0.87 0.87 0.88 0.88 0.88 0.88 0.87 0.81 

 
Cross-validated Prediction 

Alpha 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Cutoff 0.06 0.31 0.31 0.34 0.35 0.4 0.51 0.54 0.54 

Accuracy 0.74 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 
Sensitivity 0.84 0.59 0.59 0.58 0.57 0.53 0.46 0.43 0.43 
Specificity 0.73 0.97 0.97 0.97 0.98 0.98 0.99 0.99 0.99 

TSS 0.56 0.56 0.56 0.56 0.55 0.51 0.46 0.43 0.43 
Kappa 0.23 0.58 0.58 0.59 0.59 0.58 0.57 0.55 0.55 
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Figure 2: Categorical overview map of gorse presence. Categories shown were created from the prediction 
extracted directly from the final mode l. 
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Figure 3: Close-up maps of Reedsport (a), Coos Bay (b), Bandon (c), Cape Blanco (d), Gold 
Beach (e), and Brookings (f). Map categories, background image, and legend are the same 
as in Figure 2. 
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For the map categorization illustrated in Figures 2 and 3, there were 1,235,373 acres mapped within the study 
area boundary where gorse is most probably absent (Table 3). Gorse was mapped as possibly present in the 
remaining 144,619 acres, but most of that (128,502 acres) was mapped in the lower probability categories 
(categories that correspond to alpha values below 0.5). The highest probability category covered 3774 acres. 

 

Table 3: Area mapped. Categories listed in italics are 
mapped together with the one listed in the previous 
line. Numbers at the beginning of each map category 
name refer to the alpha value used to identify the 
probability cutoff that defines the upper boundary for 
the category. 

Map Category Acres 
0.0 : Gorse Probably Absent 1235373 

0.1 : Gorse Presence Possible 18198 
0.2 : Gorse Presence Possible 91158 

0.3 : Gorse Presence Likely 19146 
0.4 : Gorse Presence Likely 
0.5 : Gorse Presence Likely 7319 

0.6 : Gorse Presence Very Likely 
0.7 : Gorse Presence Very Likely 4170 
0.8 : Gorse Presence Very Likely 854 

0.9 : Gorse Presence Highly Likely 3774 

Conclusions: 
Strong accuracy statistics and favorable map reviews by our partners indicate that the final map is accurate 
enough to be quite useful for informing projects that aim to constrain gorse invasion in the area. Areas 
highlighted by our map correspond well with areas known to our partners as zones of primary gorse infestation. 
Partners organizations working along the coast in southwestern Oregon can take advantage of either the 10 
categories of potential infestation included, or the continuous nature of the map probabilities to prioritize 
control and eradication efforts. 

Uncertainties remain in the map, partly due to constraints in the input plot data, but also due to the difficulties 
of detecting gorse with imagery layers. Although we had fifty two imagery-derived variables available for 
modeling, just 19 of them informed the final model, and all were ranked as relatively unimportant to shaping 
the prediction. Climate, topography and soil variables were far more influential in the model than imagery.  

Although we provide two categorical variables for viewing the model prediction, we recommend the FinalMod_c 
variable for use in identifying areas most likely to benefit from gorse control. These categories are more tightly 
aligned to the actual model used to make the map. The cross-validated categories are primarily useful in 
conjunction with the cross-validated prediction  

The masking process may have introduced a few new errors into the final map. Spatial imprecisions in the map 
of open water may mask riverside gorse patches, and errors in the layer depicting serpentine geology may also 
erroneously mask gorse patches. Fieldwork investigating whether this is the case would be particularly useful 
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near Gold Beach, where several small, but high probability gorse patches were mapped, but removed from the 
final map with the geology-based mask. 

As with all mapping projects, future work collecting field data, and possibly compiling a few new spatial 
predictor layers could have additional benefits in refining the map. 
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Appendix 
Variables available for modeling, and importance scores (gini index) for variables selected for the final model. 

Variable Name Description 

Variable 
Importance 

prism_diftmp Climate: Difference in temperature from summer to winter 68.73 
prism_annpre Climate: Average Annual Precipitation 57.53 
prism_smrpre Climate: Precipitation during summer 45.55 
prism_smrtmp Climate: Temperature during summer 34.66 
prism_smrtp Climate: Summer drought stress index 18.27 

topo_dem Topography: elevation 15.95 
prism_decmint Climate: December Minimum temperature 15.41 
prism_anntmp Climate: Average Annual Temperature 12.77 
prism_cvpre Climate: Variability of precipitation from summer to winter 12.14 

soil_ph Soil: pH 11.87 
topo_tpi150 Topography: Topographic position index, calculated over 150m 10.58 
soil_depth Soil: depth 10.27 

gnn_CANCOV_Std50c Standard deviation of canopy cover within 50m 9.90 
prism_contpre Climate: Continuity of precipitation throughout the year 9.58 

soil_sand soil: % sand 8.61 
gnn_CANCOV_Mean100c Average canopy cover within 100m 8.36 

misc_StreamDist Distance to neareset stream 8.35 
soil_di Soil: Drainage index 8.01 

gnn_AGE_DOM_Mean100c Average age of the dominant trees within 100m 7.97 
soil_siltp Soil: % silt 7.95 
topo_tpi300 Topography: Topographic position index, calculated over 300m 7.63 

gnn_AGE_DOM_Mean50c Average of the dominant trees within 50m 7.62 
topo_slpct Topography: Slope 7.56 

gnn_CANCOV_Mean50c Average canopy cover within 50m 7.50 
soil_clay Soil: % clay 7.46 

gnn_CANCOV_Max100c Maximum canopy cover within 100m 7.42 
topo_mli Topography: Median Landform Index 7.30 

gnn_AGE_DOM_Std100c Standard deviation of age of the dominant trees within 100m 6.56 
soil_bd Soil: Bulk Density 6.54 
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Variable Name Description 

Variable 
Importance 

topo_tpi450 Topography: Topographic position index, calculated over 450m 6.26 
gnn_AGE_DOM_Std50c Standard deviation of age of the dominant trees within 50m 6.16 
gnn_CANCOV_Std100c Standard deviation of canopy cover within 100m 5.90 

soil_rock Soil: % rock 5.65 
soil_awc Soil: Available water-holding capacity 5.29 

gnn_AGE_DOM_Max100c Maximum age of the dominant trees within 100m 4.55 
gnn_AGE_DOM_Range100c Age-range of the dominant trees within 100m 4.47 

naip_vca_mn Airphoto texture summary 4.45 
naip_rca_mn Airphoto texture summary 4.28 
naip_n1_mx Airphoto texture summary 3.93 
naip_v1_mx Airphoto texture summary 3.90 
topo_asptr Topography: Aspect 3.82 
naip_v9a_mn Airphoto texture summary 3.77 

gnn_CANCOV_Max50c Maximum canopy cover within 50m 3.71 
gnn_AGE_DOM_Max50c Age-range of the dominant trees within 50m 3.69 

naip_n1_md Airphoto texture summary 3.67 
naip_n1_mn Airphoto texture summary 3.51 

gnn_CANCOV_Range100c Range of canopy cover within 100m 3.39 
naip_r1_md Airphoto texture summary 3.35 
naip_r1_mn Airphoto texture summary 3.02 
gnn_CANCOV Tree canopy cover 2.93 

gnn_CANCOV_Range50c Range of canopy cover within 50m 2.93 
naip_r4aca_mn Airphoto texture summary 2.91 

gnn_AGE_DOM Age of the dominant trees 2.82 
naip_v1a3a_mn Airphoto texture summary 2.73 

naip_v1a_mn Airphoto texture summary 2.69 
naip_v2a_mn Airphoto texture summary 2.62 

gnn_AGE_DOM_Range50c Age-range of the dominant trees within 50m 2.57 
naip_d1a_mn Airphoto texture summary 2.49 
naip_v1_mn Airphoto texture summary 2.46 

ltdr_distdur LANDTRENDR records of disturbance duration 2.40 
naip_d2a_mn Airphoto texture summary 2.35 
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Variable Name Description 

Variable 
Importance 

naip_r1_mx Airphoto texture summary 2.31 
naip_r1a_mn Airphoto texture summary 2.14 

ltdr_distyod LANDTRENDR records of disturbance year 1.97 
naip_v1_md Airphoto texture summary 1.80 

ltdr_distmag LANDTRENDR records of disturbance magnitude 1.71 
naip_r9a_mn Airphoto texture summary Not Selected 
naip_v2b_mn Airphoto texture summary Not Selected 
naip_v1b_mn Airphoto texture summary Not Selected 
naip_d3a_mn Airphoto texture summary Not Selected 
naip_d4a_mn Airphoto texture summary Not Selected 
naip_d6a_mn Airphoto texture summary Not Selected 
naip_d9a_mn Airphoto texture summary Not Selected 
naip_dca_mn Airphoto texture summary Not Selected 

naip_r1a3a_mn Airphoto texture summary Not Selected 
naip_r1b_mn Airphoto texture summary Not Selected 
naip_r2a_mn Airphoto texture summary Not Selected 

naip_r2a6a_mn Airphoto texture summary Not Selected 
naip_r2b_mn Airphoto texture summary Not Selected 
naip_r3a_mn Airphoto texture summary Not Selected 

naip_r3a9a_mn Airphoto texture summary Not Selected 
naip_r3b_mn Airphoto texture summary Not Selected 
naip_r4a_mn Airphoto texture summary Not Selected 
naip_r4b_mn Airphoto texture summary Not Selected 
naip_r6a_mn Airphoto texture summary Not Selected 
naip_r6b_mn Airphoto texture summary Not Selected 
naip_r9b_mn Airphoto texture summary Not Selected 
naip_rcb_mn Airphoto texture summary Not Selected 
naip_v2a_mn Airphoto texture summary Not Selected 

naip_v2a6a_mn Airphoto texture summary Not Selected 
naip_v3a_mn Airphoto texture summary Not Selected 

naip_v3a9a_mn Airphoto texture summary Not Selected 
naip_v3b_mn Airphoto texture summary Not Selected 
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Variable Name Description 

Variable 
Importance 

naip_v4a_mn Airphoto texture summary Not Selected 
naip_v4aca_mn Airphoto texture summary Not Selected 

naip_v4b_mn Airphoto texture summary Not Selected 
naip_v6a_mn Airphoto texture summary Not Selected 
naip_v6b_mn Airphoto texture summary Not Selected 
naip_v9b_mn Airphoto texture summary Not Selected 
naip_vcb_mn Airphoto texture summary Not Selected 

gnn_AGE_DOM_Min100c Minimum age of the dominant trees within 100m Not Selected 
gnn_AGE_DOM_Min50c Minimum age of the dominant trees within 50m Not Selected 
gnn_CANCOV_Min100c Minimum canopy cover within 100m Not Selected 
gnn_CANCOV_Min50c Minimum canopy cover within 50m Not Selected 

soil_hyd Soil: Hydrologic group Not Selected 
soil_serpentine Soil: Serpentine parent material Not Selected 

 


	Introduction:
	Methods:
	Results and Discussion:
	Conclusions:
	Acknowledgements
	Literature Cited:
	Appendix

